3.1.12 \(\int \frac {d+e x^3}{x (a+b x^3+c x^6)} \, dx\) [12]

Optimal. Leaf size=78 \[ \frac {(b d-2 a e) \tanh ^{-1}\left (\frac {b+2 c x^3}{\sqrt {b^2-4 a c}}\right )}{3 a \sqrt {b^2-4 a c}}+\frac {d \log (x)}{a}-\frac {d \log \left (a+b x^3+c x^6\right )}{6 a} \]

[Out]

d*ln(x)/a-1/6*d*ln(c*x^6+b*x^3+a)/a+1/3*(-2*a*e+b*d)*arctanh((2*c*x^3+b)/(-4*a*c+b^2)^(1/2))/a/(-4*a*c+b^2)^(1
/2)

________________________________________________________________________________________

Rubi [A]
time = 0.09, antiderivative size = 78, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {1488, 814, 648, 632, 212, 642} \begin {gather*} \frac {(b d-2 a e) \tanh ^{-1}\left (\frac {b+2 c x^3}{\sqrt {b^2-4 a c}}\right )}{3 a \sqrt {b^2-4 a c}}-\frac {d \log \left (a+b x^3+c x^6\right )}{6 a}+\frac {d \log (x)}{a} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(d + e*x^3)/(x*(a + b*x^3 + c*x^6)),x]

[Out]

((b*d - 2*a*e)*ArcTanh[(b + 2*c*x^3)/Sqrt[b^2 - 4*a*c]])/(3*a*Sqrt[b^2 - 4*a*c]) + (d*Log[x])/a - (d*Log[a + b
*x^3 + c*x^6])/(6*a)

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 632

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 648

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 814

Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_)))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Int[Exp
andIntegrand[(d + e*x)^m*((f + g*x)/(a + b*x + c*x^2)), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b^2 -
 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && IntegerQ[m]

Rule 1488

Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symbol] :>
 Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(d + e*x)^q*(a + b*x + c*x^2)^p, x], x, x^n], x] /; FreeQ[{a,
 b, c, d, e, m, n, p, q}, x] && EqQ[n2, 2*n] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {d+e x^3}{x \left (a+b x^3+c x^6\right )} \, dx &=\frac {1}{3} \text {Subst}\left (\int \frac {d+e x}{x \left (a+b x+c x^2\right )} \, dx,x,x^3\right )\\ &=\frac {1}{3} \text {Subst}\left (\int \left (\frac {d}{a x}+\frac {-b d+a e-c d x}{a \left (a+b x+c x^2\right )}\right ) \, dx,x,x^3\right )\\ &=\frac {d \log (x)}{a}+\frac {\text {Subst}\left (\int \frac {-b d+a e-c d x}{a+b x+c x^2} \, dx,x,x^3\right )}{3 a}\\ &=\frac {d \log (x)}{a}-\frac {d \text {Subst}\left (\int \frac {b+2 c x}{a+b x+c x^2} \, dx,x,x^3\right )}{6 a}+\frac {(-b d+2 a e) \text {Subst}\left (\int \frac {1}{a+b x+c x^2} \, dx,x,x^3\right )}{6 a}\\ &=\frac {d \log (x)}{a}-\frac {d \log \left (a+b x^3+c x^6\right )}{6 a}-\frac {(-b d+2 a e) \text {Subst}\left (\int \frac {1}{b^2-4 a c-x^2} \, dx,x,b+2 c x^3\right )}{3 a}\\ &=\frac {(b d-2 a e) \tanh ^{-1}\left (\frac {b+2 c x^3}{\sqrt {b^2-4 a c}}\right )}{3 a \sqrt {b^2-4 a c}}+\frac {d \log (x)}{a}-\frac {d \log \left (a+b x^3+c x^6\right )}{6 a}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.
time = 0.02, size = 80, normalized size = 1.03 \begin {gather*} \frac {d \log (x)}{a}-\frac {\text {RootSum}\left [a+b \text {$\#$1}^3+c \text {$\#$1}^6\&,\frac {b d \log (x-\text {$\#$1})-a e \log (x-\text {$\#$1})+c d \log (x-\text {$\#$1}) \text {$\#$1}^3}{b+2 c \text {$\#$1}^3}\&\right ]}{3 a} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x^3)/(x*(a + b*x^3 + c*x^6)),x]

[Out]

(d*Log[x])/a - RootSum[a + b*#1^3 + c*#1^6 & , (b*d*Log[x - #1] - a*e*Log[x - #1] + c*d*Log[x - #1]*#1^3)/(b +
 2*c*#1^3) & ]/(3*a)

________________________________________________________________________________________

Maple [A]
time = 0.06, size = 75, normalized size = 0.96

method result size
default \(\frac {-\frac {d \ln \left (c \,x^{6}+b \,x^{3}+a \right )}{2}+\frac {2 \left (a e -\frac {b d}{2}\right ) \arctan \left (\frac {2 c \,x^{3}+b}{\sqrt {4 a c -b^{2}}}\right )}{\sqrt {4 a c -b^{2}}}}{3 a}+\frac {d \ln \left (x \right )}{a}\) \(75\)
risch \(\frac {d \ln \left (x \right )}{a}+\frac {\left (\munderset {\textit {\_R} =\RootOf \left (\left (4 a^{2} c -a \,b^{2}\right ) \textit {\_Z}^{2}+\left (4 a c d -b^{2} d \right ) \textit {\_Z} +a \,e^{2}-d e b +c \,d^{2}\right )}{\sum }\textit {\_R} \ln \left (\left (\left (-14 a c +4 b^{2}\right ) \textit {\_R}^{2}+\left (e b -7 c d \right ) \textit {\_R} -3 e^{2}\right ) x^{3}+b \,\textit {\_R}^{2} a +\left (a e -3 b d \right ) \textit {\_R} -3 d e \right )\right )}{3}\) \(120\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x^3+d)/x/(c*x^6+b*x^3+a),x,method=_RETURNVERBOSE)

[Out]

1/3/a*(-1/2*d*ln(c*x^6+b*x^3+a)+2*(a*e-1/2*b*d)/(4*a*c-b^2)^(1/2)*arctan((2*c*x^3+b)/(4*a*c-b^2)^(1/2)))+d*ln(
x)/a

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^3+d)/x/(c*x^6+b*x^3+a),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*a*c-b^2>0)', see `assume?` f
or more deta

________________________________________________________________________________________

Fricas [A]
time = 0.47, size = 242, normalized size = 3.10 \begin {gather*} \left [-\frac {{\left (b^{2} - 4 \, a c\right )} d \log \left (c x^{6} + b x^{3} + a\right ) - 6 \, {\left (b^{2} - 4 \, a c\right )} d \log \left (x\right ) + \sqrt {b^{2} - 4 \, a c} {\left (b d - 2 \, a e\right )} \log \left (\frac {2 \, c^{2} x^{6} + 2 \, b c x^{3} + b^{2} - 2 \, a c - {\left (2 \, c x^{3} + b\right )} \sqrt {b^{2} - 4 \, a c}}{c x^{6} + b x^{3} + a}\right )}{6 \, {\left (a b^{2} - 4 \, a^{2} c\right )}}, -\frac {{\left (b^{2} - 4 \, a c\right )} d \log \left (c x^{6} + b x^{3} + a\right ) - 6 \, {\left (b^{2} - 4 \, a c\right )} d \log \left (x\right ) - 2 \, \sqrt {-b^{2} + 4 \, a c} {\left (b d - 2 \, a e\right )} \arctan \left (-\frac {{\left (2 \, c x^{3} + b\right )} \sqrt {-b^{2} + 4 \, a c}}{b^{2} - 4 \, a c}\right )}{6 \, {\left (a b^{2} - 4 \, a^{2} c\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^3+d)/x/(c*x^6+b*x^3+a),x, algorithm="fricas")

[Out]

[-1/6*((b^2 - 4*a*c)*d*log(c*x^6 + b*x^3 + a) - 6*(b^2 - 4*a*c)*d*log(x) + sqrt(b^2 - 4*a*c)*(b*d - 2*a*e)*log
((2*c^2*x^6 + 2*b*c*x^3 + b^2 - 2*a*c - (2*c*x^3 + b)*sqrt(b^2 - 4*a*c))/(c*x^6 + b*x^3 + a)))/(a*b^2 - 4*a^2*
c), -1/6*((b^2 - 4*a*c)*d*log(c*x^6 + b*x^3 + a) - 6*(b^2 - 4*a*c)*d*log(x) - 2*sqrt(-b^2 + 4*a*c)*(b*d - 2*a*
e)*arctan(-(2*c*x^3 + b)*sqrt(-b^2 + 4*a*c)/(b^2 - 4*a*c)))/(a*b^2 - 4*a^2*c)]

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x**3+d)/x/(c*x**6+b*x**3+a),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]
time = 4.46, size = 76, normalized size = 0.97 \begin {gather*} -\frac {d \log \left (c x^{6} + b x^{3} + a\right )}{6 \, a} + \frac {d \log \left ({\left | x \right |}\right )}{a} - \frac {{\left (b d - 2 \, a e\right )} \arctan \left (\frac {2 \, c x^{3} + b}{\sqrt {-b^{2} + 4 \, a c}}\right )}{3 \, \sqrt {-b^{2} + 4 \, a c} a} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^3+d)/x/(c*x^6+b*x^3+a),x, algorithm="giac")

[Out]

-1/6*d*log(c*x^6 + b*x^3 + a)/a + d*log(abs(x))/a - 1/3*(b*d - 2*a*e)*arctan((2*c*x^3 + b)/sqrt(-b^2 + 4*a*c))
/(sqrt(-b^2 + 4*a*c)*a)

________________________________________________________________________________________

Mupad [B]
time = 6.76, size = 2500, normalized size = 32.05 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x^3)/(x*(a + b*x^3 + c*x^6)),x)

[Out]

(d*log(x))/a - (log(a + b*x^3 + c*x^6)*(3*b^2*d - 12*a*c*d))/(2*(9*a*b^2 - 36*a^2*c)) - (atan((48*a^4*x^3*(4*a
*c - b^2)^2*(((((((3*b^2*d - 12*a*c*d)*(((2*a*e - b*d)*(((3*b^2*d - 12*a*c*d)*(108*b^4*c^3 - 378*a*b^2*c^4))/(
2*(9*a*b^2 - 36*a^2*c)) + 63*b^2*c^4*d - 81*b^3*c^3*e + 252*a*b*c^4*e))/(6*a*(4*a*c - b^2)^(1/2)) + ((3*b^2*d
- 12*a*c*d)*(108*b^4*c^3 - 378*a*b^2*c^4)*(2*a*e - b*d))/(12*a*(9*a*b^2 - 36*a^2*c)*(4*a*c - b^2)^(1/2))))/(2*
(9*a*b^2 - 36*a^2*c)) - ((2*a*e - b*d)*(42*a*c^4*e^2 - 9*b^2*c^3*e^2 - ((3*b^2*d - 12*a*c*d)*(((3*b^2*d - 12*a
*c*d)*(108*b^4*c^3 - 378*a*b^2*c^4))/(2*(9*a*b^2 - 36*a^2*c)) + 63*b^2*c^4*d - 81*b^3*c^3*e + 252*a*b*c^4*e))/
(2*(9*a*b^2 - 36*a^2*c)) + 42*b*c^4*d*e))/(6*a*(4*a*c - b^2)^(1/2)))*(3*b^2*d - 12*a*c*d))/(2*(9*a*b^2 - 36*a^
2*c)) + ((2*a*e - b*d)*(5*b*c^3*e^3 - ((3*b^2*d - 12*a*c*d)*(42*a*c^4*e^2 - 9*b^2*c^3*e^2 - ((3*b^2*d - 12*a*c
*d)*(((3*b^2*d - 12*a*c*d)*(108*b^4*c^3 - 378*a*b^2*c^4))/(2*(9*a*b^2 - 36*a^2*c)) + 63*b^2*c^4*d - 81*b^3*c^3
*e + 252*a*b*c^4*e))/(2*(9*a*b^2 - 36*a^2*c)) + 42*b*c^4*d*e))/(2*(9*a*b^2 - 36*a^2*c)) + 7*c^4*d*e^2))/(6*a*(
4*a*c - b^2)^(1/2)) - ((((2*a*e - b*d)*(((2*a*e - b*d)*(((3*b^2*d - 12*a*c*d)*(108*b^4*c^3 - 378*a*b^2*c^4))/(
2*(9*a*b^2 - 36*a^2*c)) + 63*b^2*c^4*d - 81*b^3*c^3*e + 252*a*b*c^4*e))/(6*a*(4*a*c - b^2)^(1/2)) + ((3*b^2*d
- 12*a*c*d)*(108*b^4*c^3 - 378*a*b^2*c^4)*(2*a*e - b*d))/(12*a*(9*a*b^2 - 36*a^2*c)*(4*a*c - b^2)^(1/2))))/(6*
a*(4*a*c - b^2)^(1/2)) + ((3*b^2*d - 12*a*c*d)*(108*b^4*c^3 - 378*a*b^2*c^4)*(2*a*e - b*d)^2)/(72*a^2*(9*a*b^2
 - 36*a^2*c)*(4*a*c - b^2)))*(2*a*e - b*d))/(6*a*(4*a*c - b^2)^(1/2)) - ((3*b^2*d - 12*a*c*d)*(108*b^4*c^3 - 3
78*a*b^2*c^4)*(2*a*e - b*d)^3)/(432*a^3*(9*a*b^2 - 36*a^2*c)*(4*a*c - b^2)^(3/2)))*(4*b^4*d + 7*a^2*c^2*d - a*
b^3*e - 15*a*b^2*c*d + 2*a^2*b*c*e))/(16*a^4*c^3*(a^2*e^2 - 12*b^2*d^2 + 49*a*c*d^2 - a*b*d*e)) - ((c^3*e^4 -
((3*b^2*d - 12*a*c*d)*(5*b*c^3*e^3 - ((3*b^2*d - 12*a*c*d)*(42*a*c^4*e^2 - 9*b^2*c^3*e^2 - ((3*b^2*d - 12*a*c*
d)*(((3*b^2*d - 12*a*c*d)*(108*b^4*c^3 - 378*a*b^2*c^4))/(2*(9*a*b^2 - 36*a^2*c)) + 63*b^2*c^4*d - 81*b^3*c^3*
e + 252*a*b*c^4*e))/(2*(9*a*b^2 - 36*a^2*c)) + 42*b*c^4*d*e))/(2*(9*a*b^2 - 36*a^2*c)) + 7*c^4*d*e^2))/(2*(9*a
*b^2 - 36*a^2*c)) + ((((2*a*e - b*d)*(((2*a*e - b*d)*(((3*b^2*d - 12*a*c*d)*(108*b^4*c^3 - 378*a*b^2*c^4))/(2*
(9*a*b^2 - 36*a^2*c)) + 63*b^2*c^4*d - 81*b^3*c^3*e + 252*a*b*c^4*e))/(6*a*(4*a*c - b^2)^(1/2)) + ((3*b^2*d -
12*a*c*d)*(108*b^4*c^3 - 378*a*b^2*c^4)*(2*a*e - b*d))/(12*a*(9*a*b^2 - 36*a^2*c)*(4*a*c - b^2)^(1/2))))/(6*a*
(4*a*c - b^2)^(1/2)) + ((3*b^2*d - 12*a*c*d)*(108*b^4*c^3 - 378*a*b^2*c^4)*(2*a*e - b*d)^2)/(72*a^2*(9*a*b^2 -
 36*a^2*c)*(4*a*c - b^2)))*(3*b^2*d - 12*a*c*d))/(2*(9*a*b^2 - 36*a^2*c)) + ((((3*b^2*d - 12*a*c*d)*(((2*a*e -
 b*d)*(((3*b^2*d - 12*a*c*d)*(108*b^4*c^3 - 378*a*b^2*c^4))/(2*(9*a*b^2 - 36*a^2*c)) + 63*b^2*c^4*d - 81*b^3*c
^3*e + 252*a*b*c^4*e))/(6*a*(4*a*c - b^2)^(1/2)) + ((3*b^2*d - 12*a*c*d)*(108*b^4*c^3 - 378*a*b^2*c^4)*(2*a*e
- b*d))/(12*a*(9*a*b^2 - 36*a^2*c)*(4*a*c - b^2)^(1/2))))/(2*(9*a*b^2 - 36*a^2*c)) - ((2*a*e - b*d)*(42*a*c^4*
e^2 - 9*b^2*c^3*e^2 - ((3*b^2*d - 12*a*c*d)*(((3*b^2*d - 12*a*c*d)*(108*b^4*c^3 - 378*a*b^2*c^4))/(2*(9*a*b^2
- 36*a^2*c)) + 63*b^2*c^4*d - 81*b^3*c^3*e + 252*a*b*c^4*e))/(2*(9*a*b^2 - 36*a^2*c)) + 42*b*c^4*d*e))/(6*a*(4
*a*c - b^2)^(1/2)))*(2*a*e - b*d))/(6*a*(4*a*c - b^2)^(1/2)) - ((108*b^4*c^3 - 378*a*b^2*c^4)*(2*a*e - b*d)^4)
/(1296*a^4*(4*a*c - b^2)^2))*(4*b^5*d - 2*a^3*c^2*e - a*b^4*e - 23*a*b^3*c*d + 29*a^2*b*c^2*d + 4*a^2*b^2*c*e)
)/(16*a^4*c^3*(4*a*c - b^2)^(1/2)*(a^2*e^2 - 12*b^2*d^2 + 49*a*c*d^2 - a*b*d*e))))/(8*a^3*c^3*e^3 - b^3*c^3*d^
3 + 6*a*b^2*c^3*d^2*e - 12*a^2*b*c^3*d*e^2) - (3*(4*a*c - b^2)^(3/2)*(c^3*d*e^3 + ((3*b^2*d - 12*a*c*d)*(((2*a
*e - b*d)*(((2*a*e - b*d)*(27*b^3*c^3*d - 27*a*b^2*c^3*e + (27*a*b^3*c^3*(3*b^2*d - 12*a*c*d))/(2*(9*a*b^2 - 3
6*a^2*c))))/(6*a*(4*a*c - b^2)^(1/2)) + (9*b^3*c^3*(3*b^2*d - 12*a*c*d)*(2*a*e - b*d))/(4*(9*a*b^2 - 36*a^2*c)
*(4*a*c - b^2)^(1/2))))/(6*a*(4*a*c - b^2)^(1/2)) + (3*b^3*c^3*(3*b^2*d - 12*a*c*d)*(2*a*e - b*d)^2)/(8*a*(9*a
*b^2 - 36*a^2*c)*(4*a*c - b^2))))/(2*(9*a*b^2 - 36*a^2*c)) - ((3*b^2*d - 12*a*c*d)*(((3*b^2*d - 12*a*c*d)*(((3
*b^2*d - 12*a*c*d)*(27*b^3*c^3*d - 27*a*b^2*c^3*e + (27*a*b^3*c^3*(3*b^2*d - 12*a*c*d))/(2*(9*a*b^2 - 36*a^2*c
))))/(2*(9*a*b^2 - 36*a^2*c)) + 9*a*b*c^3*e^2 - 27*b^2*c^3*d*e))/(2*(9*a*b^2 - 36*a^2*c)) - a*c^3*e^3 + 9*b*c^
3*d*e^2))/(2*(9*a*b^2 - 36*a^2*c)) + ((((3*b^2*d - 12*a*c*d)*(((2*a*e - b*d)*(27*b^3*c^3*d - 27*a*b^2*c^3*e +
(27*a*b^3*c^3*(3*b^2*d - 12*a*c*d))/(2*(9*a*b^2 - 36*a^2*c))))/(6*a*(4*a*c - b^2)^(1/2)) + (9*b^3*c^3*(3*b^2*d
 - 12*a*c*d)*(2*a*e - b*d))/(4*(9*a*b^2 - 36*a^2*c)*(4*a*c - b^2)^(1/2))))/(2*(9*a*b^2 - 36*a^2*c)) + ((2*a*e
- b*d)*(((3*b^2*d - 12*a*c*d)*(27*b^3*c^3*d - 27*a*b^2*c^3*e + (27*a*b^3*c^3*(3*b^2*d - 12*a*c*d))/(2*(9*a*b^2
 - 36*a^2*c))))/(2*(9*a*b^2 - 36*a^2*c)) + 9*a*b*c^3*e^2 - 27*b^2*c^3*d*e))/(6*a*(4*a*c - b^2)^(1/2)))*(2*a*e
- b*d))/(6*a*(4*a*c - b^2)^(1/2)) - (b^3*c^3*(2...

________________________________________________________________________________________